Description of the paradox
The EPR paradox draws on a phenomenon predicted by quantum mechanics, known as quantum entanglement, to show that measurements performed on spatially separated parts of a quantum system can apparently have an instantaneous influence on one another. This effect is now known as "nonlocal behavior" (or colloquially as "quantum weirdness" or "spooky action at a distance"). In order to illustrate this, let us consider a simplified version of the EPR thought experiment put forth by David Bohm.
[edit] Measurements on an entangled state
We have a source that emits pairs of electrons, with one electron sent to destination A, where there is an observer named Alice, and another is sent to destination B, where there is an observer named Bob. According to quantum mechanics, we can arrange our source so that each emitted electron pair occupies a quantum state called a spin singlet. This can be viewed as a quantum superposition of two states, which we call state I and state II. In state I, electron A has spin pointing upward along the z-axis (+z) and electron B has spin pointing downward along the z-axis (-z). In state II, electron A has spin -z and electron B has spin +z. Therefore, it is impossible to associate either electron in the spin singlet with a state of definite spin. The electrons are thus said to be entangled.
The EPR thought experiment, performed with electrons. A source (center) sends electrons toward two observers, Alice (left) and Bob (right), who can perform spin measurements.
Alice now measures the spin along the z-axis. She can obtain one of two possible outcomes: +z or -z. Suppose she gets +z. According to quantum mechanics, the quantum state of the system collapses into state I. (Different interpretations of quantum mechanics have different ways of saying this, but the basic result is the same.) The quantum state determines the probable outcomes of any measurement performed on the system. In this case, if Bob subsequently measures spin along the z-axis, he will obtain -z with 100% probability. Similarly, if Alice gets -z, Bob will get +z.
There is, of course, nothing special about our choice of the z-axis. For instance, suppose that Alice and Bob now decide to measure spin along the x-axis, according to quantum mechanics, the spin singlet state may equally well be expressed as a superposition of spin states pointing in the x direction. We'll call these states Ia and IIa. In state Ia, Alice's electron has spin +x and Bob's electron has spin -x. In state IIa, Alice's electron has spin -x and Bob's electron has spin +x. Therefore, if Alice measures +x, the system collapses into Ia, and Bob will get -x. If Alice measures -x, the system collapses into IIa, and Bob will get +x.
In quantum mechanics, the x-spin and z-spin are "incompatible observables", which means that there is a Heisenberg uncertainty principle operating between them: a quantum state cannot possess a definite value for both variables. Suppose Alice measures the z-spin and obtains +z, so that the quantum state collapses into state I. Now, instead of measuring the z-spin as well, Bob measures the x-spin. According to quantum mechanics, when the system is in state I, Bob's x-spin measurement will have a 50% probability of producing +x and a 50% probability of -x. Furthermore, it is fundamentally impossible to predict which outcome will appear until Bob actually performs the measurement.
So how does Bob's electron know, at the same time, which way to point if Alice decides (based on information unavailable to Bob) to measure x and also how to point if Alice measures z? Using the usual Copenhagen interpretation rules that say the wave function "collapses" at the time of measurement, there must be action at a distance or the electron must know more than it is supposed to. To make the mixed part quantum and part classical descriptions of this experiment local, we have to say that the notebooks (and experimenters) are entangled and have linear combinations of + and – written in them, like Schrödinger's Cat.
Incidentally, although we have used spin as an example, many types of physical quantities — what quantum mechanics refers to as "observables" — can be used to produce quantum entanglement. The original EPR paper used momentum for the observable. Experimental realizations of the EPR scenario often use photon polarization, because polarized photons are easy to prepare and measure.
[edit] Measurements on an entangled state
We have a source that emits pairs of electrons, with one electron sent to destination A, where there is an observer named Alice, and another is sent to destination B, where there is an observer named Bob. According to quantum mechanics, we can arrange our source so that each emitted electron pair occupies a quantum state called a spin singlet. This can be viewed as a quantum superposition of two states, which we call state I and state II. In state I, electron A has spin pointing upward along the z-axis (+z) and electron B has spin pointing downward along the z-axis (-z). In state II, electron A has spin -z and electron B has spin +z. Therefore, it is impossible to associate either electron in the spin singlet with a state of definite spin. The electrons are thus said to be entangled.
The EPR thought experiment, performed with electrons. A source (center) sends electrons toward two observers, Alice (left) and Bob (right), who can perform spin measurements.
Alice now measures the spin along the z-axis. She can obtain one of two possible outcomes: +z or -z. Suppose she gets +z. According to quantum mechanics, the quantum state of the system collapses into state I. (Different interpretations of quantum mechanics have different ways of saying this, but the basic result is the same.) The quantum state determines the probable outcomes of any measurement performed on the system. In this case, if Bob subsequently measures spin along the z-axis, he will obtain -z with 100% probability. Similarly, if Alice gets -z, Bob will get +z.
There is, of course, nothing special about our choice of the z-axis. For instance, suppose that Alice and Bob now decide to measure spin along the x-axis, according to quantum mechanics, the spin singlet state may equally well be expressed as a superposition of spin states pointing in the x direction. We'll call these states Ia and IIa. In state Ia, Alice's electron has spin +x and Bob's electron has spin -x. In state IIa, Alice's electron has spin -x and Bob's electron has spin +x. Therefore, if Alice measures +x, the system collapses into Ia, and Bob will get -x. If Alice measures -x, the system collapses into IIa, and Bob will get +x.
In quantum mechanics, the x-spin and z-spin are "incompatible observables", which means that there is a Heisenberg uncertainty principle operating between them: a quantum state cannot possess a definite value for both variables. Suppose Alice measures the z-spin and obtains +z, so that the quantum state collapses into state I. Now, instead of measuring the z-spin as well, Bob measures the x-spin. According to quantum mechanics, when the system is in state I, Bob's x-spin measurement will have a 50% probability of producing +x and a 50% probability of -x. Furthermore, it is fundamentally impossible to predict which outcome will appear until Bob actually performs the measurement.
So how does Bob's electron know, at the same time, which way to point if Alice decides (based on information unavailable to Bob) to measure x and also how to point if Alice measures z? Using the usual Copenhagen interpretation rules that say the wave function "collapses" at the time of measurement, there must be action at a distance or the electron must know more than it is supposed to. To make the mixed part quantum and part classical descriptions of this experiment local, we have to say that the notebooks (and experimenters) are entangled and have linear combinations of + and – written in them, like Schrödinger's Cat.
Incidentally, although we have used spin as an example, many types of physical quantities — what quantum mechanics refers to as "observables" — can be used to produce quantum entanglement. The original EPR paper used momentum for the observable. Experimental realizations of the EPR scenario often use photon polarization, because polarized photons are easy to prepare and measure.